
An Approach of Windows Memory Management Simulation on Linux

Rui Li, Nanjun Yang, Shilong Ma
State Key Lab. of Software Development Environment

School of Computer Science & Engineering, Beihang University
Beijing 100191, China

{lirui, ynj.t.g, slma}@nlsde.buaa.edu.cn

Abstract—So far open source software has been developed for
several decades. Linux has gradually become one of the major
operating systems. The issue that Windows application
migration can be migrate to Linux is raised. However, there is
great difference in the implementation mechanism between
Windows and Linux. In this research, we try to build an
middle layer which between application and operating system
to shield the differences between the underlying operating
system for the upper layer application. The middle layer
provide unified fixed interface by packaging different
operating system calls, so as to make the same source code can
be directly translated on different operating systems with no
change. It can achieve the migration of the application in
source code level. In this paper, we introduce the Simulation
Windows memory management mechanism. We build a
Windows-like virtual memory management mechanism which
simulates Windows virtual memory management on Linux.
And also implement Windows heap management mechanism
on Linux. And finally, two experiments are given to test and
verify our approach.

Keywords- virtual memory management; heap management;
simulation; operating system; algorithm; migration

I. INTRODUCTION
So far open source software has been developed for

several decades. Excellent design and extraordinary
performance, coupled with the strong support from IBM,
INTEL, CA, ORACLE and other internationally renowned
companies, Linux has gradually become one of the major
operating systems. From the view of software providers, if
the developed application software can adapt to both
Windows and Linux, to some extent, it partly determines
competitiveness and market share of the application software.
From software user's opinion, it will make convenience for
they work if the Windows application software they familiar
with can run on Linux and provide the same operation model.
But as we know, there is great difference in the
implementation mechanism between Windows and Linux.
Applications running on the operating system do not access
the system resources directly. It follows the manner required
by the operating system. This way is called system call.
System call closely relate to operating system. And it is not
compatible between two different operating systems. As
Windows and Linux for example, system call with same
external behavior but different function definition and
internal implementation. Especially for Windows, System
call is actually not the final interface between kernel and
program, Windows completely based on DLL mechanism,

its system calls packaged by the DLL mechanism, this is the
so-called Windows API [1].

It had a goes in the computer field, any problem in
computer science can be solved by another layer of
indirection. So, we try to build a middle layer, it provide
unified fixed interface by packaging different operating
system calls, so as to make the same source code can be
directly translated on different operating systems with no
change. To achieve the migration of the program in source
code level.

We know the memory management is very important in
the operating system. For most Windows applications, it is
almost inevitable to operate and manage the memory. But
there are differences in memory management between
Windows and Linux. For example, Windows memory
management emphasizes the two-tier structure: virtual
memory management and heap management. While in Linux
memory management is not like that. And system calls of
heap management in Linux cannot use to implements
Windows functions which called “fixed address
redistribution of the heap”.[2] In our work, we build a
Windows-like virtual memory management mechanism
which simulates Windows virtual memory management on
Linux. And also implement Windows heap management
mechanism on Linux.

The remainder of this paper is structured as follows: in
Section 2, we discuss related work; Section 3 contains a
presentation of the simulation of the Windows memory
management mechanism that we designed on Linux, the
experimental results and conclusions are given in Section 4
and 5, in Section 6, some future directions we intend to
follow are described.

II. RELATED WORK
The related works for VM Scheduling can be categorized

into two categories: kernel differences compensate in kernel
and kernel difference compensate out of kernel.

Some important effort research on kernel difference
compensate out of kernel, such as [3], [4], [5], [3] is directed
toward similar goals to ours’. In [3], the authors describe
WINE which is not Windows emulator. It is an API
conversion technology, use Linux system call function to
implement the corresponding function of Windows API. The
goal runs Windows programs on Linux can be achieved. In
[4], the POSIX system call API library under Win32 system
is proposed. The software on POSIX systems (such as Linux,
BSD and other UNIX systems) can be migrated to Windows

2012 Third World Congress on Software Engineering

978-0-7695-4863-0/12 $26.00 © 2012 IEEE

DOI 10.1109/WCSE.2012.34

143

by recompiling. In [5], a cross-platform, open source
automated build system is introduced.

Longene [6] the Linux Compatible kernel project, is the
study on kernel differences compensate in kernel. Longene
was investment and presided in 2005 by Insigma Technology
Co., Ltd. It was Designed to allow users to run Windows
applications directly on Linux, without having to depend on
the Windows operating system.

There are important differences between the approach we
propose and the ones mentioned above. Notably:

According to the API conversion technology, for API
with obvious correspondence relationship, we also use API
conversion method. However, for API without
correspondence relationship, our approach reconstructs a set
of Windows-like mechanisms to achieve these functions.

Compare to Longene, our approach does not need to
modify the Linux kernel. Developers does not require to
familiar with the Linux kernel.

It can be used as part of the application software.

III. WINDOWS MEMORY MANAGEMENT MECHANISM
SIMULATION

The application basically cannot run without the memory
management. But the memory management of Windows and
Linux are different in design and implementation which we
talk about in section 1. In this paper, we reconstruct
Windows-like memory management mechanisms on Linux.
For example, Windows virtual memory management,
Windows heap management and so on.

A. Windows virtual memory management simulation
In Windows, virtual memory of process was divided by

page size. Each page has three states, there are free, reserved
and committed respectively. The free page can be
redistribution. For example, it can be allocated as heap space.
The reserved page cannot be redistribution and access. After
the reserved page is mapped to physical memory, the state of
page converts to “committed”. Users can access through pre-
defined way. In Linux it does not have the concept of
reserved and committed. From above-mentioned, we know
free page can be converted to reserved page. Reserved page
or committed page can be converted to committed state.
Other transformation methods cannot be allowed.
Allocations, release, protection, locking and so on are the
operation of the virtual memory.

Our approach is that open a special continuous space in
virtual address of Linux as the scope of the "Windows-like
virtual memory management". In another word, we use
"Brk" in the program initialization to set aside a chunk of
new space. All of the virtual memory management functions
only acts on this space. Fig 1 shows the Windows-like virtual
memory management solution.

Fig.1. the Windows-like virtual memory management solution

 In Linux, the page which is free or reserved will be set
“PROT_NONE” to deny access. The committed page can
translate the access rights which are user needs into
expression forms of Linux.

The critical data structure of virtual memory management
is listed as follows.

Data structure :
#define TOTAL_VIRTUAL_PAGES 1048576;// the total
virtual page number of process, default value is 1048576,
each page is 4KB
#define MAXIMUM_VIRTUAL_PAGES 131072;// Page
number used for Windows-like virtual memory
management
typedef struct _VM_INFO{
 DWORD PageSize;// The size of system page
 LPVOID Base;//The starting address of Windows -like
virtual memory management
 char MemoryState[TOTAL_VIRTUAL_PAGES]
;// the state of page from the starting address
 SIZE_T AllocSize[TOTAL_VIRTUAL_PAGES]
;// the information of the committed page
 DWORD Protection[TOTAL_VIRTUAL_PAG ES];//
the access rights of each page
 char Locked[TOTAL_VIRTUAL_PAGES];//the
locked state of each page

}VM_INFO

B. Windows heap management simulation
We know in Windows, heap is a section of reserved or

committed page. So Windows heap management is built on
the basis of the virtual memory management. The heap
management is different from virtual memory management.
The heap management needs special data structure which is
not required in virtual memory management, such as control
module, the memory block list and so on. Memory block
which is allocated is linked by the list.

In Windows, the heap is divided into growable heap and
non-growable heap. Growable heap and non-growable heap
have initial size. Growable heap has no maximum size limit
while non-growable has. For non-growable heap, any
operation which try to allocate more space than maximum
size will fail. The operation on heap includes create, allocate,
release, destruction and redistribution. Redistribution can
implements with the starting address of the memory block
unchanged (default is can be changed). This function is one
of heap management in Linux which cannot be realized.

Our approach is that linked the memory block by list, and
operates on it. Next we would describe the simulation of
growable heap and non-growable heap in details.

For growable heap, allocated and unallocated are all
located in a continuous page after the initial address of the
heap. Space of the initial size will be submitted and space of
the maximum size will be reserved. With the allocation of
heap space, committed page of the initial size will run out.
Then the heap will continue to submit a page to meet the
allocation requirements until the reserved page can not

144

satisfy the demand of distribution. Fig.2. shows the structure
of growable heap.

Fig.2. the structure of growable heap

 For non-growable heap, just reserve and submit the page
of initial size. When the page cannot meet the allocation
needs. Virtual memory management will find another space
to meet the allocation requirements by use “VirtualAlloc” till
the system memory cannot meet the requirements of
distribution. In this case, the heap space may be is not
continuous. Fig.3. shows the structure of non-growable heap.

Fig.3. the structure of non-growable heap

The critical data structure of heap is listed as follows.

Data structure :
#define MAXIMUM_HEAPS XX//the maximum number
of heap, XX is the custom
int HeapNum;// The number of the heap in current
HANDLE HeapHandle[MAXIMUM_HEAPS];// the
handle of each heap
typedef struct _HEAP_BLOCK_HEAD{// The head of the
heap memory block
 struct _HEAP_BLOCK_HEAD *PreBlock;// The
previous memory block
 struct _HEAP_BLOCK_HEAD *NextBlock;// The
latter memory block
 DWORD Size;// Available size of block
 char Free;// Is a free block or not
} HEAP_BLOCK_HEAD
typedef struct _HEAP _HEAD{// The head of the heap
 HEAP_BLOCK_HEAD *FirstBlock;// The first
memory block of heap
 DWORD Size;// Memory size reserved for the heap
 DWORD MaximumSize;//The maximum size of heap

char Growable;// Is a growable heap or not
char Executable;// Whether you can run the code in the

heap or not
} HEAP_HEAD

As mentioned above, each heap has a head to record

information, and so do each memory block in heap. Memory
blocks are linked through the double-linked list. In the
information of heap memory block, the most important
information is the identity of free statement. Almost all
operations of heap are performed in free block.

IV. EXPERIMENTS
In this section, we test and verify our approach with two

experiments. One is for virtual memory management, and
the other is for heap management.

A. Experiment
This experiment is designed for testing the Operating

functions of virtual memory management on a special
continuous space which is opened for "Windows-like virtual
memory management".

First, we use “VirtualAlloc” to reserve a space whose
starting address is “a” and size is 10,000 bytes.

Second, try to reserve the already reserved space.
Then, submit 100bytes from starting address “a”, and fill

the committed space with random characters.
Finally, release the reserved space from starting address

“a”. and then try to read the already released space.
 The execution process can be presented graphically as
below:

Fig.4. The execution process of Experiment

Fig 4 shows that the reserve operation of virtual memory

was implement correctly. To reserve the already reserved
space was lead to failure. The allocated virtual memory can
read and write. Access operation was rejected when it was
executed on released virtual memory. From the experiment
result, all of the Windows virtual memory operations can be
executed on the continuous space which is opened for
"Windows-like virtual memory management".

B. Experiment
We simulate Windows heap management on the basis of

virtual memory management. The test case we designed for
the testing of growable heap and non-growable heap,
especially for “fixed address redistribution of the heap”.

The experiment we designed is listed as follows.

Test Case :
1:Initialization

create heap h1, which is growable heap
create non-growable heap h2, whose initial size is

10,000 bytes and maximum size is 100,000 bytes
2: (1)allocate a space whose starting address is “a1” and

size is 100 bytes from h1, and fill the allocated space
with random characters

 (2) continue to allocate a space whose starting address
is “a2” and size is 1,000,000 bytes from h1.

 (3) output address “a1” and “a2”
3: (1) allocate a space whose starting address is “a1” and

size is 100 bytes from h2

145

(2) allocate a space whose starting address is “a2” and
size is 100 bytes from h2

(3) allocate a space whose starting address is “a3” and
size is 100 bytes from h2

 (4) allocate a space whose starting address is “a4” and
size is 100 bytes from h2

(5) allocate a space whose starting address is “a5” and
size is 30,000 bytes from h2

(6) output address “a1”, “a2”, “a3”, “a4” and “a5”
4: (1) output the size of the memory block “a1” in heap h2

(2) fill the allocated space “a4” in heap h2 with random
characters

(3) release the allocated memory block which starting
address is “a2” in heap h2.

 (4) release the allocated memory block which starting
address is “a3” in heap h2.
5: (1) try to modify the size of memory block which

starting address is “a1” in heap h2 into 1,000 bytes
with starting address unchanged

(2) try to modify the size of memory block which
starting address is “a1” in heap h2 into 250 bytes with
starting address unchanged

(3) output the size of the memory block “a1” in heap
h2.

 (4) try to modify the size of memory block which
starting address is “a4” in heap h2 into 30,000 bytes, and
output its starting address
5: destroy the heap h2, and and then try to read the

memory block in already destroyed heap

The execution process can be presented graphically as
below:

Fig.5. The execution process of Experiment

Fig 5 shows that the size of memory block allocated

more than maximum size will not be allowed. It will call the
virtual memory management to reserve and submit another
new space when the size of memory block allocated more
than initial size in both growable heap and non-growable
heap. Not only variable address redistribution of the heap but
also fixed address redistribution of the heap is simulated
successfully. From this experiment result, our approach
basically realizes the simulation of Windows heap manager
on Linux.

V. CONCLUSIONS AND FUTURE WORK
For most Windows applications, it is almost related to

memory management without exception. As an essential part
of operating system, all types of operating systems provide
this functionality. Due to different design concepts, different

operating system has different concrete realization which
leads to correspond in semantic incomplete. The absence of
corresponding implementation in semantic between different
operating systems could be an obstacle to Windows
application that need to migrate to Linux with no or little
changes. To address this problem, we proposed a simulation
approach to implement Windows implementation
mechanisms on Linux. Experiments show that the approach
we introduced can help Windows program with no changes
run on Linux directly and effective.

As mentioned earlier, the approach we proposed has some
drawbacks. The most essential is time efficiency. The
emulation layer which was added will cause the application
to require a longer running time.

As future work, we will analysis the factor which affect
the time efficiency and improve the algorithm we designed
for smarter migration.

ACKNOWLEDGMENT
We would like to thank students of the same laboratory

for their comments on the paper and also for proofreading
the text. This work is partially supported by National Science
and Technology Support Program (2011BAH14B04).

REFERENCES
[1] MSDN Library[EB/OL].:http://msdn.microsoft.com/en-

us.
[2] Fan Wenqing, Zhou Binbin, An Jing. " Proficient in

Windows API: Function, Interface, Programming
examples"[M], Beijing, Posts and Telecom Press.
Feb.2009.

[3] Wikipedia, WINE, http://en.wikipedia.org/wiki/Wine_
(software)

[4] Geoffrey J.Noer, Cygwin: A free win32 porting layer for
UNIX Application, August 1998, Cygwin distribution is
available at http://www.cygwin.com/

[5] CMake, http://www.cmake.org/
[6] Longene. http://www.longene.org/whitepaper.php,

2009-02-01
[7] Kay A.Robbins, Steven Robbins. "UNIX System

Programming: Communication, Concurrency and
Threads"[M], Beijing, Mechanical Industry Press, 2005

[8] developerWorks[EB/OL]. :
http://www.ibm.com/developerworks/cn/linux/kernel/sy
scall/part1/appendix.html#2

[9] Wikipedia[EB/OL].: http://en.wikipedia.org/wiki/C_stan
dard _library.

[10] Common Language Runtime Overview,
http://msdn.microsoft.com/en-us/library/ddk909ch(vs.
71).aspx

[11] Migration station. http://www-128.ibm.com/developer
works/ondemand/migrate/Linux.htm

146

