
Introducing Approximate Memory Support in Linux
Kernel

Giulia Stazi, Francesco Menichelli, Antonio Mastrandrea, Mauro Olivieri
Sapienza University of Rome

Dept. of Information Engineering, Electronics and Telecommunications (DIET)
Rome, Italy

Email: {stazi,menichelli,mastrandrea,olivieri}@diet.uniroma1.it

Abstract—This paper describes the implementation of approx-
imate memory support in Linux operating system kernel. The
new functionality allows the kernel to distinguish between normal
memory banks, which are composed by standard memory cells
that retain data without corruption, and approximate memory
banks, where memory cells are subject to read/write faults with
controlled probability.

Approximate memories are part of the wider research topic re-
garding approximate computing and error tolerant applications,
in which errors in computation are allowed at different levels
(data level, instruction level, algorithmic level). In general these
errors are the result of circuital or architectural techniques (i.e.
voltage scaling, refresh rate reduction) which trade off energy
savings for the occurrence of errors in data processing.

The ability to support approximate memory in the OS is
required by many proposed techniques which try to save energy
by raising memory fault probability, but the requirements at OS
level have never been described and an actual implementation
has never been proposed. In this paper we provide an analysis
of the requirements and a description of the implementation of
approximate memory management. Our approach allows Linux
kernel to be aware of exact (normal) and approximate physical
memories, managing them as a whole for the common part (e.g.
optimization algorithms, page reuse) but distinguishing them in
term of allocation requests and page pools management.

The new kernel has been built and extensively tested on a
hardware x86 platform, showing the correctness of the imple-
mentation and of the fallback allocation policies.

I. INTRODUCTION

Approximate computing [1] has become a viable approach
to energy efficient design of digital systems. Such an approach
relies on the fact that many applications can tolerate a certain
degree of approximation in the output data without affecting
the quality of results perceived by the user. Approximate
computing solutions are also supported by technology scaling
factors, due to the growing statistical variability in process
parameters which makes traditional design methodologies in-
efficient [2].

Memory represents a significant contribution to system
power consumption in modern digital circuits and, when
considering systems that spend most of their time in energy
saving states (e.g. standby), it can reach up to 50% of total
power consumption [3].

Main memory in modern systems is composed of DRAM
cells that store data as charge on a capacitor. Due to leakage
currents, the charge must be periodically restored by a refresh

operation, which is usually performed in the background by
dedicated hardware units (DRAM controller). This operation
degrades performance, but also wastes energy, a drawback
which is expected to worsen as DRAMs scale to higher
capacities and densities.

Many works address the problem caused by DRAM refresh
using hardware or software techniques [4], [5], trying to reduce
refresh rate while conserving data integrity (e.g. using of error
correcting codes, ECC) [6], [7].

In the late period a new approach has been proposed,
lying in the general topic of approximate computing. Starting
from the consideration that a range of applications (called
error tolerant applications) do not require exact computation
and storing of data, approximate computing design paradigm
try to reach new trade-offs, exchanging energy consump-
tion/performance for increased fault probability. These error
tolerant applications are relatively insensitive to errors in large
portions of their data, while require correctness only on a
subset of data, defined as critical data [8].

Specifically for DRAMs, approximate computing tech-
niques experiment the reduction of refresh rate (to the point
of allowing controlled error rates in memory cells) saving
significant energy. In [9] the authors propose to reduce refresh
rate in selected DRAM memory banks by allowing software
developers to specify critical and non-critical data in programs;
physical memory is partitioned in two banks, one with regular
refresh rate for critical data and one with reduced refresh rate
for non-critical data. In order to implement the technique,
some changes on hardware architecture and on software sup-
port are introduced; in particular, software requires OS to be
aware of exact and approximate DRAM banks, providing a
way to allocate non-critical data in the approximate bank.

Operating system support is a fundamental part of the
approach and, while describing the general mechanism of
allocating non-critical memory, authors do not investigate or
provide implementation details on a specific OS. In this paper
we propose and describe the implementation of approximate
memory allocation support in the Linux OS kernel. The new
OS kernel can be directly run in architectures containing banks
of DRAM with reduced refresh rate, but it is not limited to
them. In general, it provides support for any kind of system
architecture where coexist exact and approximate banks of
memory.

978-1-5090-6508-0/17/$31.00 ©2017 IEEE

PRIME 2017, Giardini Naxos–Taormina, Italy Digital Circuits and Sub-Systems

97

In the following sections, we provide a description of the
physical memory management in Linux OS kernel (Section
II); then we describe the extension we have developed to
support approximate memory allocation (Section III). We
finally provide results, in the form of allocation statistics
provided by the kernel, discussing the characteristics of the
implementation.

II. PHYSICAL MEMORY MANAGEMENT IN LINUX KERNEL

A. Memory zones

Physical pages are the basic units of Linux Kernel memory
management. Linux Kernel does not treat all pages in the
same way, but groups pages having similar properties in zones.
This partitioning has no physical relevance, but allows kernel
to keep track of pages and overcomes hardware limitations
(some pages cannot be used for specific tasks because of their
physical memory address). There are five primarily zone:

• ZONE DMA: pages within this zone can be used by DMA
hardware.

• ZONE DMA32: this zone is like ZONE DMA but it can be
accessed only by 32 bit devices.

• ZONE NORMAL: pages within ZONE NORMAL are di-
rectly mapped by the kernel.

• ZONE HIGHMEM: this zone corresponds to high memory
and it is not directly mapped by the kernel.

• ZONE MOVABLE: Unlike memory zones described pre-
viously, zone movable does not have a specific physi-
cal range but pages within this zone come from other
memory zones. The scope of this virtual memory zone is
indeed to avoid memory fragmentation.

Zone attributes are considered hierarchically the order pre-
sented, i.e. a page in ZONE NORMAL could be used to
satisfy an allocation request for a lower hierarchy zone as
ZONE HIGHMEM, while a page in ZONE DMA, being the
higher in hierarchy, could satisfy every allocation request.
All memory zones are not necessarily present, but depend
on the hardware architecture, however ZONE NORMAL and
ZONE MOVABLE are always enabled in the kernel. Partitioning
memory pages into zones allows kernel to satisfy memory
allocation requests as needed: some requests (e.g. allocation
for DMA-able memory) could require pages only from a
specific zone, other allocations instead could get pages from
multiple zones.

B. Allocators

All interfaces provided by the kernel to allocate memory
are based on a low level algorithm with page size granularity,
called Binary Buddy Allocator [10]. According to this algo-
rithm, physical memory is divided in power of two size blocks,
when a block of the requested size is not available, a larger
block is split in two half (buddies) and the process is iteratively
repeated until a block of the requested size is produced (see
Fig. 1).

In the Linux kernel, the core routine of buddy allocator
is received as parameter, among others, a bit mask (called
gfp mask) which is a set of flags that allow the kernel to

Fig. 1. Buddy system allocator

determine allocator behavior. In particular, these flags allow to
specify the zone for the allocation, indicating that the kernel
should allocate memory from the requested zone if possible.
The allocator considers the zone specified in gfp mask as an
indication and, in some cases depending on actual memory
utilization and balancing policies, the request could be satisfied
selecting pages belonging to hierarchically higher zones.

III. KERNEL MEMORY MANAGEMENT EXTENSION

This paper proposes a new approach to introduce the support
for approximate memories in Linux operating system, allowing
the system to manage allocation requests of critical data, that
must be stored in exact memory, and non-critical data, that can
be stored in approximate memory. In this section we describe
our extension to Linux kernel memory management, imple-
menting a new memory zone, called ZONE APPROXIMATE
and a new dynamic allocator to select ZONE APPROXIMATE
for allocation.

A. Approximate zone creation

The introduction of ZONE APPROXIMATE allows the kernel
to manage a set of memory pages that will be selected when
approximate memory allocations are requested. Pages within
ZONE APPROXIMATE will correspond indeed to a portion of
physical memory where it has been allowed a certain amount
of data corruption probability in order to save energy. The
physical memory could be, for example, DRAM banks with
reduced refresh rate, as described in Section I.

When we create the ZONE APPROXIMATE region, we define
it as the last memory zone because of kernel fallback mecha-
nism. According to this policy, when an allocation request is
scheduled, Linux kernel checks if the selected zone is suitable
to satisfy the request; if the zone is not suitable, the kernel
allocator falls back to a hierarchically higher zone. In other
words, if an allocation requests the ZONE APPROXIMATE
region, but memory pages in this zone are not available, the
request would be satisfied by one of the hierarchically higher
zones (e.g. ZONE NORMAL). This would result in storing
approximated data in exact memory and cancel possible energy
savings, but the functionality of the application would be not
compromised. Moreover, ZONE APPROXIMATE must be the
last one in hierarchy also considering an allocation request
for exact memory (ZONE NORMAL or ZONE DMA). When a
normal (i.e. exact) allocation request is scheduled, but pages
in ZONE NORMAL cannot satisfy the request, kernel must
never select ZONE APPROXIMATE pages. In this way critical

Paper P52 PRIME 2017, Giardini Naxos–Taormina, Italy

98

Fig. 2. Memory zones layout

data, that must be exact, will be excluded from approximate
memory.

Finally, another step is required to complete the creation of
ZONE APPROXIMATE: the association of a physical address
range to this zone. This step, as well as the layout of each
memory zone, is architecture dependent, so we may have
different sizes and layouts of approximate memory zone,
depending on the architecture.

Summing up, as shown in Fig. 2, a new memory zone for
storing approximated data is introduced in the Linux kernel.
Fig. 2 shows the general layout where all zones are active, but
we recall that the actual layout may differ since, depending
on the architecture, some zones could be not present.

B. Approximate memory allocation

The next step is to implement a custom allocator to dy-
namically allocate non-critical data on ZONE APPROXIMATE.
As described previously, all internal functions provided by the
kernel to allocate memory pages get a mask of gfp flags as
parameter, which allows to drive the behavior of the allocator.
In order to be able to specify ZONE APPROXIMATE as favorite
zone for allocation, we have defined a specific gfp flag called
GFP APPROXIMATE: when this flag is set, the kernel tries to
allocate memory using ZONE APPROXIMATE pages.

Another important optimization mechanism inside the ker-
nel that must be taken into account is allocation fair policy.
According to this policy, kernel tries to balance allocation
request by interleaving them between enabled zones, avoiding
that a zone is saturated before other zones. Leaving the
original policy, requests for ZONE APPROXIMATE memory
could be diverted to ZONE NORMAL or ZONE DMA even
before ZONE APPROXIMATE is full, resulting in sub-optimal
allocation strategy. In order to properly handle allocation
requests for ZONE APPROXIMATE, we chose to disable kernel
allocation fair policy for ZONE APPROXIMATE (i.e. when
GFP APPROXIMATE flag is set).

The definition of GFP APPROXIMATE flag plus changes
to fallback mechanism and fair allocation policy, allows to
block all allocations of ZONE APPROXIMATE pages apart from
explicit requests: if the kernel allocator routines do not get
GFP APPROXIMATE flag as parameter, ZONE APPROXIMATE
will never be selected as memory zone to satisfy the allocation
request.

Eventually, since gfp flags are not defined outside kernel
space, we implemented a new kernel space function dedicated

TABLE I
HARDWARE SETUP: MEMORY ZONE LAYOUT

Zone Physical range

ZONE DMA 0-16M

ZONE NORMAL 16M-456M

ZONE APPROXIMATE 456M-896M

cat /proc/dmesg
...
895MB LOWMEM available
mapped low ram: 0 - 37f14000
low ram: 0 - 37f14000
Zone ranges:
DMA [mem 0x0000000000001000-
0x0000000000ffffff]
Normal [mem 0x0000000001000000-
0x000000001bf89fff]
Approximate [mem 0x000000001bf8a000-
0x0000000037f13fff]
...

Fig. 3. Output of dmesg command

to approximate memory allocation. The kernel space routine
is then exported to a user space routine called approx malloc,
that allows user space applications to request pages from
ZONE APPROXIMATE.

IV. RESULTS

In this section we describe the experimental setup used
to evaluate our Linux operating system with approximate
memory support, showing results corresponding to memory
allocations on ZONE APPROXIMATE.

A. Hardware setup

The whole implementation work started from the mainline
Linux kernel, version 4.3. We extended it with approximate
memory support and, for the hardware dependent part, using
the x86 32-bit architecture. In particular, since in this architec-
ture only four memory zones can be enabled at the same time,
we defined ZONE DMA, ZONE NORMAL, ZONE MOVABLE
and ZONE APPROXIMATE. The extension of each zone is
described in Table I.

We compiled and used our kernel to boot Linux on a x86
PC; in this setup the actual DRAM memory (exact) covers
both the ZONE NORMAL and ZONE APPROXIMATE address
spaces.

B. Allocation tests

As first test, after system boot, we examined the output
of kernel ring buffer (Fig. 3) in order to check x86 RAM
memory mappings and zone ranges. These logs come from
the dmesg command and show that ZONE APPROXIMATE has
been properly created: our zone is the last kernel memory zone,
after ZONE DMA and ZONE NORMAL, and it is mapped in the
physical memory in the range 0x1bf8a000-0x37f13fff.

For evaluating our custom allocator, we wrote a test-
bench application that calls the approx malloc function to
request a block of 1000 memory pages (about 4MB) from
ZONE APPROXIMATE. Using the zoneinfo system command

PRIME 2017, Giardini Naxos–Taormina, Italy Digital Circuits and Sub-Systems

99

cat /proc/zoneinfo
...
Node 0, zone Approximate
pages free 114570
spanned 114570
present 114570
nr_dirtied 0
nr_written 0
...

Fig. 4. ZONE APPROXIMATE statistics after boot

cat /proc/zoneinfo
...
Node 0, zone Approximate
pages free 113570
spanned 114570
present 114570
nr_dirtied 0
nr_written 0
...

Fig. 5. ZONE APPROXIMATE statistics after approx malloc call

we get the information printed in Fig. 4, which shows
statistics about ZONE APPROXIMATE before the allocation
request. These lines show that ZONE APPROXIMATE before
allocation has 114570 free pages, considering that each
page on x86 architecture is 4KB, we get confirmation that
ZONE APPROXIMATE size is about 440MB (see Table I).

Moreover we can see that statistics about
ZONE APPROXIMATE are all zero, confirming that kernel has
not used approximate pages to allocate its data structures.
This is a relevant aspect because pages in approximate region,
being subject to faults, must not store critical kernel data and
should never be allocated by kernel for its internal purposes.

Fig. 5 shows the same statistics after the allocation request.
We can see now that ZONE APPROXIMATE has 113570 free
pages confirming that our custom malloc allocated exactly
1000 pages. We can also get kernel allocator information
from the vmallocinfo command. Fig. 6 shows that the kernel
allocator has requested and obtained 1000 pages in virtual
address range 0xfc401000-0xfc7ea000.

In order to assess stability we extensively tested the sys-
tem with allocation benchmarks programs, filling the whole
ZONE APPROXIMATE page set. As expected from that point
on further requests of ZONE APPROXIMATE pages caused
allocations in ZONE NORMAL, confirming that the fallback
mechanism is working properly.

V. CONCLUSION

In this paper we presented an extension to Linux Kernel
memory management in order to dynamically allocate non-

cat /proc/vmallocinfo
...
0xfb332000-0xfb336000 16384
n_tty_open+0x11/0xc0 pages=3 vmalloc
0xfb33d000-0xfb33f000 8192
bpf_prog_alloc+0x25/0x80 pages=1 vmalloc
0xfc401000-0xfc7ea000 4100096
SyS_approxvmalloc+0x23/0x90 pages=1000
...

Fig. 6. Output of vmallocinfo command

critical data in a specific portion of memory, separated from
exact RAM memory. This extension involved the creation of
ZONE APPROXIMATE, where approximated pages containing
non-critical data can be grouped, and the implementation of
a custom allocator to request pages within this zone. Pages
within ZONE APPROXIMATE are supposed to tolerate a certain
amount of data corruption, allowing to trade off more relaxed
specifications on data integrity with energy saving measures.

We tested our prototype kernel on a real x86 platform, show-
ing that we are able to exercise dynamic memory allocation
on ZONE APPROXIMATE pages in a stable way.

We are currently working on the development of a hardware
emulator for architectures containing approximated memo-
ries, based on QEmu [11]. An emulator with approximated
memory, together with our Linux kernel extension, would
allow indeed the execution of actual error tolerant applications,
where faults could be injected at run time with predefined
statistical properties. In this way it would be possible to
evaluate output degradation on real applications and study
the relationships between tolerable output error and energy
savings.

Another important step would be the design of a hardware
platform with approximated DRAM cells (e.g. DRAM banks
with a slowed down refresh period). Booting the kernel on
such platform would expose ZONE APPROXIMATE pages to
real hardware faults allowing to experimentally validate the
whole technique against power consumption reduction.

REFERENCES

[1] J. Han and M. Orshansky, “Approximate computing: An emerging
paradigm for energy-efficient design,” in 2013 18th IEEE European Test
Symposium (ETS). IEEE, 2013, pp. 1–6.

[2] A. Mastrandrea, F. Menichelli, and M. Olivieri, “A delay model allowing
nano-cmos standard cells statistical simulation at the logic level,” in Ph.
D. Research in Microelectronics and Electronics (PRIME), 2011 7th
Conference on. IEEE, 2011, pp. 217–220.

[3] J. Liu, B. Jaiyen, R. Veras, and O. Mutlu, “Raidr: Retention-aware
intelligent dram refresh,” in ACM SIGARCH Computer Architecture
News, vol. 40, no. 3. IEEE Computer Society, 2012, pp. 1–12.

[4] C. Isen and L. John, “Eskimo-energy savings using semantic knowledge
of inconsequential memory occupancy for dram subsystem,” in Microar-
chitecture, 2009. MICRO-42. 42nd Annual IEEE/ACM International
Symposium on. IEEE, 2009, pp. 337–346.

[5] R. K. Venkatesan, S. Herr, and E. Rotenberg, “Retention-aware place-
ment in dram (rapid): Software methods for quasi-non-volatile dram,”
in High-Performance Computer Architecture, 2006. The Twelfth Inter-
national Symposium on. IEEE, 2006, pp. 155–165.

[6] P. G. Emma, W. R. Reohr, and M. Meterelliyoz, “Rethinking refresh:
Increasing availability and reducing power in dram for cache applica-
tions,” IEEE micro, vol. 28, no. 6, 2008.

[7] C. Wilkerson, A. R. Alameldeen, Z. Chishti, W. Wu, D. Somasekhar, and
S.-l. Lu, “Reducing cache power with low-cost, multi-bit error-correcting
codes,” in ACM SIGARCH Computer Architecture News, vol. 38, no. 3.
ACM, 2010, pp. 83–93.

[8] A. Sampson, W. Dietl, E. Fortuna, D. Gnanapragasam, L. Ceze, and
D. Grossman, “Enerj: Approximate data types for safe and general low-
power computation,” in ACM SIGPLAN Notices, vol. 46. ACM, 2011,
pp. 164–174.

[9] S. Liu, K. Pattabiraman, T. Moscibroda, and B. G. Zorn, “Flikker: saving
dram refresh-power through critical data partitioning,” ACM SIGPLAN
Notices, vol. 47, no. 4, pp. 213–224, 2012.

[10] K. C. Knowlton, “A fast storage allocator,” Communications of the ACM,
vol. 8, no. 10, pp. 623–624, 1965.

[11] F. Bellard, “Qemu, a fast and portable dynamic translator.” in USENIX
Annual Technical Conference, FREENIX Track, 2005, pp. 41–46.

Paper P52 PRIME 2017, Giardini Naxos–Taormina, Italy

100

